篇一:第六章井眼轨迹设计与控制
第六章、井眼轨迹设计与控制
第一节、概述
当今的科学技术提供了预测地下油气藏位置的手段,而从地面确定位置到地下确定油气藏通道的建立,只有通过钻井工程来达到。钻井工程的钻进原理前面的章节已经阐述,本章要解决的问题是如何来设计这一条通道的轨迹以及如何控制钻进过程,使实际钻进路径和设计轨迹一致。一种情况是:当地面井口位置就在地下油气藏的正上方,采用铅直井井眼轨迹设计,此时设计的轨迹就是从地面井口位置到地下油气藏的一条铅直线,轨迹控制的问题是如何防止实钻轨迹过大地偏离出铅垂线(这一过程称为“井斜控制”)。另一种情况是:当地面井口位置不在地下油气藏的正上方或钻井目标有特殊要求,将按专门的钻井目的和要求设计对应的井眼轨迹,并在钻进过程中一直进行井眼轨迹控制,使井眼沿预先设计的井眼轨迹钻达预定目标。工程上把第一种情况的井称为直井,第二种情况的井称为定向井或根据目标和轨迹的情况分为丛式井、侧钻井、水平井、大位移井、分支井等。
定向井的应用范围广阔:
1.地面限制。油田所处地面不利于或不允许设置井场钻井或搬家安装受到极大障碍。如房屋建筑、城镇、河流、沼泽、高山、港口、道路、海洋、沙漠等地面条件限制。
图6-1 定向井在油气田勘探开发中的应用
a-勘探海底油田;b-海上钻井利用平台;c-控制断层;d-地面条件限制;e-盐丘附近钻井;f-增大出油量;g-多底井;h-救援井
1
2.地下地质条件要求。由于地质构造特点,定向井能更有利于发现油藏、增加开发速度。如控制断层、探采盐丘突起下部的油气层、探采高角度裂缝性油气藏、开发薄油层油藏等。
3.钻井技术的需要。需用定向井来处理井下复杂情况或易斜地层的钻井。如我国自行设计、施工的数口成功的定向救援井:濮2-151井(中原油田)、永59井(胜利)、南2-1井(青海)。均成功地制服了井喷失控事故。
4.其它方面的应用如过江管道的铺设、煤层气的开发、地热井的钻井等。
定向井引入石油钻井界约在19世纪后期,当时的定向井是在落鱼周围侧钻。世界上第一口真正有记录的定向井是1932年美国人在加利福尼亚亨延滩油田完成。当时浅海滩下油田的开发是在先搭的栈桥上竖井架钻井。美国一位有创新精神的钻进承包商改变了这种做法,他在陆地上竖井架,使井眼延伸到海床下,由此开创了定向钻井新纪元。1934年,德国的克萨斯康罗油田一口井严重井喷。一位有丰富想象力的工程师提出用定向井技术来解决。在距失控井一定距离钻一口定向井,井底与失控井相交,然后向井内泵入重浆压住失控井,这是世界上第一口定向救援井。二战后随着生产的发展、海洋石油的开发、井下动力钻具的研制以及计算技术的进步,促进了定向井技术的发展。
我国的第一口定向井是1955年在玉门油田钻成,井号为C2-15井。1965年在四川油田钻成了我国第一口水平井,磨三井,水平延伸160m,是世界上第二个钻成水平井的国家。四川油田的草16井,1987年钻成,是一口过长江定向井。70年代以来,我国海洋定向井迅速发展,在渤海湾海上钻丛式定向井,在一个钻井平台上施工多达12口(目前已达35口以上)定向井。胜利油田的河50丛式井组,1988年完成,一个陆地平台钻成42口定向井。
由于石油天然气勘探开发的需要,在我国第七个五年计划期间,定向井、丛式井钻井工艺技术获得突破性进展,大踏步进入生产实用阶段,其水平跨入世界先进行列。采用这项技术打成了一大批多目标并、三维绕障井、高精度定向勘探井,满足了地质勘探上的特殊需要,并且成功地运用丛式井组整装开发了沈阳、二连、江苏的卞杨等三个油田。“七五”期间全国共钻成定向井4317口,为“六五”期间的4.65倍,少占用土地万亩以上,节约资金3亿元。
辽河油田在杜48断块的10号平台钻17口井,平均井深2344.2m,最大井斜28°,最大水平位移1633.3m,中靶率达到100%,平均建井周期32天,平均机械钻速9.12m/hr,这个平台和相同日数的单井相比少占工业用地123亩,节约76%,节约成本119.7万元。
四川石油管理局1987年成功地钻成隆40-1丛式井组,最大井斜角90°,开创了我国深层、硬地层打大斜度井的先河。该井完钻井深3130米,垂直井深2290.04米,最大水平位移1459.44米,在气层内进尺532米,等于目的层垂直厚度的5倍,该井打出了我国大斜度定向井的新水平。
胜利油田根据油藏地面建设十分密集,地下老井很多(达14口)的实际情况,采用了多目标、绕障打油田开发井的先进技术,应用计算机剖面绘图,防碰扫描、三维绕障程序、丛式井防干扰装置,随钻定向造斜与扭方位技术以及电子多点测量等一系列井眼轨迹控制技术,打成了我国目前陆上丛式井完井口数最多的井组—河50丛式井组,共有42口井,其中多目标井有5口,平台占地面积65亩,比单井少占地335亩,节约土地84.5%。
2
第二节、定向井井眼轨迹设计
定向井在施工前必须按专门的钻井目的和要求设计对应的井眼轨迹。该设计轨迹必须在现有的装备、工艺和技术条件下满足勘探开发的要求。设计时要考虑能经济地钻达目标的路径或轨迹,要考虑地质因素对要用的井底钻具组合的影响以及可能最终影响井眼轨迹的其它因素。定向井施工是使井眼沿预先设计的井眼轨迹钻达预定目标的过程,所以设计的定向井轨迹是施工的依据和检验的标准。
一、基本要素
定向井的井眼轨迹是空间的一条曲线,为了能结合工程参数描述该曲线,需要掌握定向井的基本要素:
1.井深。井眼轴线上任一点到井口的井眼长度称为该点的井深,也称为该点的测量井深或斜深,单位为米, 常用字母L表示;
2.井斜角:井眼轴线上任一点的井眼方向线(切线,指向前方)与通过该点的重力线间之间的夹角,称为该点处的井斜角,单位为度,常用字母?表示;
3.方位角:井眼轴线上任一点的正北方向线与该点的井眼方向线在水平面投影线间的夹角,称为该点处方位角,单位为度,常用字母?表示;
4.井斜变化率:单位长度井段内井斜角的改变
图6-2 井斜角和方位角
值称为井斜变化率。通常以两测点间的井斜角的变化值与两测点间井段长度
的比值表示。常用单位为
3
度/30米,用字母K?表示:
K??
?B??A
LB?LA
(6?1)
式中:
K??井斜变化率,?/m
?A、?B?上下(A、B)测点处井斜角,?
LA、LB?上下(A、B)测点处测量井深,m
5.方位变化率:单位长度井段内方位角的改变值称为方位变化率。通常以两测点间的方位角的变化值与两测点间井段长度的比值表示。常用单位为单位为度/30米,用字母K?表示:
K??
?B??A
LB?LA
(6?2)
式中:
K??方位变化率,?/m
?A、?B?上下(A、B)测点处方位角,?
LA、LB?上下(A、B)测点处测量井深,m
6.垂深:井眼轴线上任一点到井口所在水平面的距离称为该点的垂深,单位为米; 7.水平位移:井眼轴线上任一点到井口所在的铅垂线的距离,称为该点的水平位移,单位为米;
其中的井深、井斜角和方位角为定向井井眼轨迹的基本要素,掌握了井眼轴线任一点的这三要素,也就掌握了井眼轴线的球坐标,就能把井眼轴线精确描述出来。当然,对于实际的井眼,由于测量技术和成本的原因,我们只能获得井眼轴线上有限点的三要素,这样,我们对实际井眼轨迹的描述就有一定的近似性。
二、井眼曲率
井眼曲率是井眼设计和施工中的一个非常重要的参数,它决定着设计的可行性、经济性和安全性。井眼曲率大,可以在较短的弯曲井段获得所需的较大的井斜角,从而节省造斜进尺和施工费用。但是,井眼曲率过大会加剧钻具磨损,甚至造成断钻具事故。过大的井眼曲率也使钻具通过困难并给后期的完井作业和采油工程增加麻烦。
井眼的曲率的定义为:单位井段长度内井眼切线倾角的改变。通常以两测点间切线倾角的变化值与两测点间井段长度的比值表示。下面分三种情况来讨论井眼曲率的计算方法:
1. 只有井斜角变化的井段:
4
此种井段处于一个垂直平面内,井段两测点间的切线倾角的变化即为井斜角变化,因此该井段井眼曲率等于该井段的井斜变化率:
K?K??
?B??A
LB?LA
(6?3)
2. 只有方位角变化的井段:
此种情况井段井段两测点间的切线倾角的变化即为方位角变化,因此该井段井眼曲率等于该井段的方位变化率:
K?K??
?B??A
LB?LA
(6?4)
3.同时有井斜角变化和方位角变化的井段:
如图所示,图中的AB表示空间井眼轴线段,A和B为L上相邻的两个测点。为清楚起见,将B点切线移到A点(即在A点作B点切线的平行线),并延长A、B两点的切线交水平面EON于A/、B/,连接OA/和OB/,则A/OB/为方位角增量,角A/AB/就是井眼空间井眼曲线在A、B两测点间切线倾角的变化值,又称为全角变化或全角,用?表示。OAA/为A点井斜角,OAB/为B点井斜角。由图可知全角就是A点切线矢量和B点切线矢量间的夹角。由两矢量间夹角的计算公式有:
图6-3 全角变化示意图
cos???A?B??A?B??A?B
式中: 角的余弦)
?A、?A、?A—A点切线的方向余弦(A点切线分别于x、y、z轴方向之间夹?B、?B、?B—B点切线的方向余弦
?A?sin?Acos?A?
?
?A?sin?Asin?A?
??A?cos?A?
5
有下列关系式成立:
篇二:水平井井眼轨迹控制技术
水平井井眼轨迹控制技术
1、水平井井身剖面的优化设计
(1)、井身剖面设计原则:
1满足地质要求,实现地质目的;
2)保证钻进和起下钻摩阻扭矩尽可能小;
3)其形状有利于地质导向工作和现场实际井眼轨迹控制;
4)能克服油层深度预测和工具(含地层)造斜率的不确定问题等等。
(2)、井身剖面类型的选择
水平井井身剖面根据地质目标、油层情况、地质要求、靶前位移,选择不同的剖面类型。油田施工的水平井,从曲率半径来分,选择长曲率半径水平井和中曲率半径水平井。剖面选用了具有两个稳斜井段的直-增-稳-增-稳(探油顶)-增(着陆段)-水平段三增剖面、直-增-稳(探油顶)-增(着陆段)-水平段双增剖面、直-增-水平段单增剖面。设计造斜率选为2~10o/30m。
(3)水平井防碰绕障技术
受地面条件限制,油田多为丛式定向井,防碰绕障问题突出,水平井又需要一定的靶前位移,许多井往往从一个平台打到另一个平台下面,即要考虑本平台邻井的防碰,又要考虑下部斜井段和水平段的防碰,通过现场水平井钻井实践,形成了油田特有的水平井防碰绕障技术:
1)、井身剖面的优化设计。在设计时,充分考虑邻井情况,通过剖面类型、造斜点、造斜率等的优化设计,尽量避开老井,必要时进行绕障设计。
2)、利用软件进行防碰扫描和防碰距离计算。
3)、现场井眼轨迹的监控和防碰绕障施工。
4)、地质导向技术在防碰绕障中的应用。
2、井眼轨迹控制技术
随着水平井在不同区块的施工,不同区块每口井的地质情况不同,井眼轨迹控制过程中遇到的问题也不一样。突出表现在以下几个方面:
(1)、实钻地质情况复杂多变,油层深度与设计变化较大,井眼轨迹需要随地质情况变化进行调整。
(2) 、水平段油层深度在横向上变化不一,有从低部位到高部位的,也有从高部位到低部位的,还有先从低部位到高部位再下降的。
(3) 、不同区块工具造斜能力和地层对井眼轨迹的影响不同。
(4) 、测量数据的相对滞后对地质导向和井眼轨迹的预测和调整带来困难。
(5) 、老平台钻井的防碰问题在水平井钻井中更为突出,水平井的直井段、造斜段及水平段都存在防碰问题。
为了有效地进行井眼轨迹的控制,掌握井眼轨迹状况和发展趋势,及时发现油顶、准确入靶和沿油层钻进,水平井施工中在造斜点以下所有井段全部应用了MWD+导向钻具进行井眼轨迹监测与控制,从探油顶段开始应用LWD进行地质导向,并与地质人员密切配合,保证实现地质目的。
水平井井眼轨迹控制原则:根据设计,结合地层情况,优化水平井井眼轨迹控制方案;以地质导向为先导,根据地层变化,及时调整,控制好水平井着陆段和水平段的井眼轨迹,实现地质目的。
水平井井眼轨迹控制技术措施:
(1)、水平井井眼轨迹控制施工方案的优化。针对不同的井身剖面和地层剖面类型,选择不同的井眼轨迹控制方案。
对于油层为上倾方向,控制井眼轨迹在A点前20~30m,垂深达到设计油顶位置,井斜达到85°~86°,进入油层后能及时在A点前调整到最大井斜,达到井眼轨迹控制在距油顶1.5m范围内。
对于油层为下倾方向,水平段井斜角小于90°,控制井眼轨迹在A点前40~50m,垂深达到设计油顶位置,井斜达到82°~84°,进入油层后能及时在A点前调整到最大井斜,达到井眼轨迹控制在距油顶1.5m范围内。
根据地质情况变化,及时调整井眼轨迹。与地质人员一起,及时了解、分析地层变化,着陆段提前下如LWD仪器,提供伽玛、电阻率测量数据,根据油层深度的变化,及时修正井眼轨迹,保证在A点前着陆,避免牺牲水平段。
(2)、着陆前的井眼轨迹控制技术
① 上直段打直防碰工作。上直段打斜而产生的上直段位移过大,需要对造斜段的造斜率及方位进行调整,给轨迹控制增加难度。G104-5P10井上直段位移15m,方位与设计方位一致,由于设计造斜率较大(7°/30 m),设计第一稳斜段11.4 m,调整余地小,施工中在造斜段摸清工具在滑动钻进的造斜率和转动钻进的效果后,逐步调整,最后在A点前21 m进入油层。水平井防碰一般上直段与临井的斜井段防碰,斜井段和水平段要绕过临井的下直段,防碰问题突出,G104-5P4井设计上直段530处与临井G215-4井斜井段距离仅1.7m,施工中采取加密测斜,必要时进行绕障,防止了井眼相撞事故发生。
② 造斜段根据直井段实钻轨迹对待钻井眼轨迹进行修正,及时消化上直段产生的位移,将井眼轨迹调整到设计线,以利于下部井眼轨迹控制。
③ 采用MWD+导向钻具和合理的钻进参数进行井眼轨迹控制。优选导向钻具,保证实钻造斜率略高于设计造斜率,在造斜段开始,及时分析工具在不同井斜及滑动钻进和转动钻进的造斜能力,制定合理的滑动钻进和转动钻进工作方式,达到井眼轨迹开展施工方案预定效果。
④ 做好井眼轨迹的监测、预测与控制,调整控制好垂深、井斜和位移,为下步的水平井着陆创造条件。 ⑤ 加强与邻井地层对比分析工作,及时吸收由于地质预测误差对井眼轨迹的影响,为下步根据地质需要进行井眼轨迹调整,准确钻入油气层创造了条件。
⑥ 在满足井眼轨迹控制所需造斜率的要求下,尽量采用转动钻进工作方式,有效地提高了井眼轨迹的圆滑度,破坏了岩屑床,提高了井眼的清洁。
(3)、水平井着陆的井眼轨迹控制
① 采用LWD+导向钻具进行井眼轨迹控制,利用LWD的伽玛和电阻率测量及时了解地层值的变化,为及时准确的识别出油层和进行井眼轨迹调整,提供了可靠的依据。根据油层伽玛和电阻率特性,结合岩屑、气测和荧光定量分析录井,判断钻头已进入油层,从而做到了精确探油顶和入靶。
② 对于油层为上倾方向,水平段设计井斜大于90°的,应控制井眼轨迹在A点前20~30m,垂深达到设计油顶位置,井斜达到85°~86°,进入油层后能及时在A点前调整到最大井斜,达到井眼轨迹控制在距油顶1.5m范围内。避免位移提前过多,进入油层时位置偏下,而井斜角较小,找到油层后上不去或偏离油顶下1.5m范围,不能达到地质要求。
③ 对于油层为下倾方向,水平段井斜角小于90°,靶前位移可适当多提前,探油顶井斜角可略小,可控制井眼轨迹在A点前40~50m,垂深达到设计油顶位置,井斜达到82°~84°,进入油层后地层下倾,井眼轨迹能在A点前追上地层,达到在距油顶1.5m范围内的地质要求。
④ 提前下入LWD(设计要求井斜80°时下入),根据伽玛和电阻率曲线,结合岩屑、气测和荧光定量分析录井资料,及时对比地层,发现地层变化,及时对井眼轨迹进行调整,越早判断地层变化,即减少了轨迹控制的难度,又有利于地质目的的顺利实现,减少水平段损失。G63-P1井施工中,提前打开伽玛和电阻率曲线,通过地层对比,发现地层下移5m,及时对井眼轨迹进行了调整,在井斜79°左右稳斜,使垂深下移后,增斜探油顶,实钻油层位置下移5m,实际进入油层位置在A点前13.19 m,圆满实现了地质目的。
篇三:水平井井眼轨迹
水平井井眼轨迹控制技术
水平井井眼轨迹控制工艺技术是水平井钻井中的关键,是将水平井钻井理论、钻井工具仪器和施工作业紧密结合在一起的综合技术,是水平井钻井技术中的难点,原因是影响井眼轨迹因素很多,水平井井眼轨迹的主要难点是:
1.工具造斜能力的不确定性,不同的区块、不同的地层,工具造斜能力相差较大
2.江苏油田为小断块油藏,油层薄,区块小,一方面对靶区要求高,另一方面增加了目的层垂深的不确定性。
3.测量系统信息滞后,井底预测困难。
根据以上技术难点,需要解决三个技术关键:
1、提高工具造斜率的预测精度。
2、必须准确探明油层顶层深度,为入窗和轨迹控制提供可靠依据。
3、做好已钻井眼和待钻井眼的预测,提高井眼轨迹预测精度。
动力钻具选择
一、影响弯壳体动力钻具造斜能力的主要因素
影响弯壳体动力钻具的造斜能力的主要因素有造斜能力钻具结构因素和地层因素及操作因素三大类。其中主要的是结构因素,其次是地层因素。
(一)动力钻具结构因素影响
1.弯壳体角度对工具造斜率的影响
单双弯体弯角是影响造斜工具造斜能力的主要因素。
在井径一定情况下,弯壳体的弯角对造斜率的影响很大,随着弯壳体角度的增大,造斜率呈非线性急剧增大。
2.弯壳体近钻头稳定器对工具造斜率的影响。
弯壳体近钻头稳定器的有无,对工具造斜率影响很大。如Φ165mm1°15′有近钻头稳定器平均造斜率达到30°/100米,无近钻头稳定器平均造斜率仅为20°/100米左右,相差近50%。
如陈3平3井使1°30′Φ172mm不带稳定器单弯螺杆平均造斜率为25°/100米,井身轨迹控制要求,复合钻进后,滑动钻进,造斜率仅为16-20°/100米。
3.改变近钻头稳定器到下弯肘点之距离对工具造斜率的影响
通过移动下稳定器位置可以改变近钻头稳定器至下肘点之距离。上移近钻头稳定器可大大提高工具的造斜能力,并且在井径扩大程度较大的情况下,造斜能力的上升幅度比井径扩大较小时要大。
(二)松散地层对工具造斜率的影响
据分析可知,下部钻具组合的造斜能力主要取决于钻头侧向力,而钻头侧向力来源于近
钻头稳定器和其他支点的支承作用。一般来说,井壁对工具的支承作用增加,工具的造斜能力增加。在胶结松散的地层中钻进时,由于井壁的支承作用减弱,稳定器将会吃入地层,相当于减少了稳定器的外径或增大了井径,从而导致工具造斜能力下降。因此,软地层工具造斜率偏低。
(三)钻井操作时对工具造斜率的影响
1.滑动与转动对工具造斜率。
当井眼轨迹处于连续滑动,由于井眼曲率对工具造斜率的影响,井眼轨迹顺着自然方向前进,因而表现出工具造斜率变大,同理,当井眼轨迹处于连续转动后,滑动钻进,工具造斜率偏低。
当井眼轨迹处于连续滑动后,转动钻进时井眼轨迹会顺着滑动趋势漂移一点。
2.因起钻、下钻(包括短起下钻)和循环时工具造斜率。
起钻、下钻、循环时对工具造斜率影响比较大,其主要原因是起钻、下钻、循环时井眼变大,导致工具造斜能力下降。如陈3平3井在1921.86m处循环短起下钻。短起下钻前工具造斜率为26°/100米,短起下钻后,工具造斜率为21°/100米,由于该井选择的单弯螺杆为不带稳定器工具造斜率基本上一定,下步造斜率要求不低于22°/100米,因此我们提前考虑短起下钻对工具造斜率的影响,从而保证了该井一只钻头一根螺杆钻完造斜井段。
二 、工具造斜率的计算
由于动力钻具造斜率理论上精确地分析计算十分复杂,且影响弯壳体动力钻具的造斜能力的最主要因素是钻具结构因素,以简单的几何分析方法计算预测工具的造斜能力仍很有实用意义。
几何分析计算单弯动力钻具造斜率方法是先求出单弯动力钻具弯点至其上本体与井壁的切点距离,然后根据三点共圆的原理,选择上切点、下稳定器和钻头三个点作为确定圆弧的三个点。同时考虑稳定器外径大小,从而计算出圆弧曲率。
选上切点,下稳定器和钻头作为确定圆的三个点:
单弯马达造斜率计算图
选上切点为坐标原点,确定上切点、下稳定器及钻头三点的坐标为:
X2=0
y1=0
X2=(L1-L0)Si
y2=L2+(L1-L0)Cosr
x3=L1Si
y3=L2+L1Cosr
下稳定器是单弯本体上的欠尺寸稳定器,和井壁之间有间隙,为了考虑这个间隙的影响
X2=(L1-L0)Si-δCosr
y2=L2+(L1-L0)Cosr+δSi
根据江苏油田的地层特点优选导向马达如下:
德州产Φ172mm导向马达
Φ172mm×1°45′不带稳定器的马达造斜率为25°-30°/100米,
Φ172mm×1°30′不带稳定器的马达造斜率为20°-25°/100米,
Φ172mm×1°15′不带稳定器的马达造斜率为15°-20°/100米。
大港产Φ172mm导向马达
Φ172mm×1°45′不带稳定器的马达造斜率为20°-25°/100米,
Φ172mm×1°30′不带稳定器的马达造斜率为15°-20°/100米,
Φ172mm×1°15′不带稳定器的马达造斜率为6°-15°/100米。
Φ165mm导向马达
Φ165mm×1°15′带稳定器的马达造斜率初始造斜率为20°-25°/100米
随着井斜的增加,造斜率逐步增大,最高达45°/100米。
Φ165mm×1°30′带稳定器的马达造斜率为25°-30°/100米,
随着井斜的增加,造斜率逐步增大,最高达50°/100米。
稳 斜 探 顶
水平井轨迹总体控制方案实际上就是轨道控制人员在拿到井身剖面设计轨道图之后,综合考虑工具,测量仪器、油层顶部可能误差等多种因素,对井身剖面设计轨迹进行细化、补充、修改和落实后形成的一种实施方案。
水平井轨迹总体控制方案采用应变法控制方案,即以稳斜井段来探测油层顶垂深,然后以设计好的造斜率增斜着陆入窗。
应变法的特点:
1、应变法的造斜率K值是根据工具造斜能力,油层几何参数确定,一般不作变动,即无论油层顶垂深误差是正是负,只要探知油层顶位置后,接着便以固定的造斜率K着陆入窗。
2、油层顶位置不确定带来的影响是靠稳斜段补偿和消除。在距离油层顶设计值一定高度即开始稳斜钻进,直至探知油层顶。
水平井应变方案:
1、进入角αc的确定:
设工具造斜率K,由于要求在目的层顶界面以下1~2米着陆,其计算公式如下:
2=5730/K(Sinαm-Sinαc)
2、水平位移提前量的确定:
充分估计油层提前出现的最大垂深误差值△H1,在此“警戒线”,即规定钻达这一深度时要保证井斜角,达到预定的进入角αc,然后稳斜钻进探油层顶。
充分估计油层顶滞后出现的最大垂深误差值△H2,以进入角αc,稳斜钻进直至探油层顶。
水平位移提前量△S=(△H1+△H2)tgαc+K(Cosαc -Cosαm)
这样保证了靶前位移水平小于设计靶前位移,从而保证水平井水平段段长达到甲方要求根据水平位移提前量和进入角αc,求造斜井段的造斜率Kc。
S-ΔS=5730/Kc(Cos0°-Cosαc)
Kc=5730(1?Cos?c)
S??S
水平井油层提前量出现的最大误差垂深一般考虑1~2米,油层滞后出现最大误差垂深为1~2米。
水平井待钻井眼设计
待钻井眼设计是水平井轨迹控制技术的重要组成部分。待钻井眼设计与所钻地层岩性、钻前设计剖面、造斜工具性能、随钻测量工具类型有着密切关系。由于工具实际造斜率极不稳定,并且大多数小于理论造斜率10%~40%,以及小断块油藏,油层多变性,油层的不确定性更大,因此十分需要待钻井眼设计为施工提供科学依据。
一、待钻井眼设计基本原则与思路
待钻井眼设计是在水平井钻进过程中对钻前井身剖面的一种修正设计,它不但遵循钻前井身剖面设计原则,而且还有其自身的约束条件和设计原则。待钻井眼设计的宗旨即是设计出一条结合实际情况,切实可行的最优剖面。
(一)待钻井眼设计基本原则
1.根据地层造斜特征选择造斜工具的原则
待钻井眼设计,需要考虑地层岩性及胶结程度对工具造斜能力的影响程度。
2.在分析评价工具造斜能力的基础上确定造斜率的原则
进行待钻井眼设计时,需要根据钻具组合造斜能力的分析,评价确定出工具的造斜率,并在此基础上,确定出给施工留有一定余地的待钻井眼设计造斜率。
3.待钻井眼设计轨迹必须满足目标点参数的原则
待钻井眼设计需要满足目标点(设计剖面线上的任一点、靶点或人为给定点)的空间几何参数。
4.设计剖面与待钻剖面的空间几何关系确定的原则
待钻井眼设计剖面与钻前井身设计剖面的相对位置要有定量的几何关系,以便为施工者提供直观的数据,为制定施工措施及优选钻井轨迹提供依据。
5.能进行三维空间待钻设计的原则。
6.待钻井眼设计剖面应是最优剖面的原则。
(二)待钻井眼设计基本思路
1.实钻井眼轨迹的描述
根据实钻井眼的测量参数:测深、井斜、方位,求得实钻井眼的坐标参数。
2.分析、评价工具的造斜能力
根据实钻井眼的测量参数及钻井参数,结合已钻地层和待钻地层特性,分析和评价已钻和待钻地层的造斜特性及现有造斜工具的造斜能力。
3.预测井底参数
根据实钻测量参数,结合最后一测点到钻头处的地层特性、钻进参数和工具的造斜能力,预测出井底井身轨迹参数。
4.选择待钻井眼设计方法
根据钻头处的井身参数和实钻轨迹参数建立实钻轨迹与设计剖面之间的定量空间几何