如何写论文?写好论文?免费论文网提供各类免费论文写作素材!
当前位置:免费论文网 > 范文百科 > 余弦定理说课稿

余弦定理说课稿

来源:免费论文网 | 时间:2016-09-02 11:39:35 | 移动端:余弦定理说课稿

篇一:余弦定理的说课稿

余弦定理说课稿 A-

各位评委,各位同学,大家好!今天我说课的题目是余弦定理,余弦定理选自高中数学必修五解斜三角形的第二节。我以新课标的理念为指导,将教什么、怎样教,为什么这样教,分为教材与学情分析、教学目标、重难点分析、教法与学法、教学过程设计、板书设计六个方面进行说明:

一、教材与学情分析

1、教材分析:

“余弦定理”是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,也因此成为是高考的必考内容之一。分数所占比例在15%左右,主要以选择题和一个解答题形式出现。因此,余弦定理的知识非常重要。

本节课是“余弦定理”教学的第一节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。这堂课,我并不准备将余弦定理全盘托出呈现给学生,而是采用创设情境式教学,通过具体的情景激发学生探索新知识的欲望,引导学生一步步探究并发现余弦定理。

2、学情分析: 1.有利因素

学生刚刚学习了正弦定理的推导证明及应用,已经掌握了研究斜三角形的一般思路,对于本节课的学习会有很大帮助。

2.不利因素

本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,

学生学习起来有一定难度。

二、教学目标

1、知识与技能:

(1)掌握余弦定理的内容及其变形形式,能够运用余弦定理解决相关边角问题。 (2)体会余弦定理证明的思路及过程,学会运用其解决实际建模问题。 2、过程与方法:

(1)运用向量、坐标系法的相关知识,使得几何问题代数化。

(2)多种角度证明余弦定理,一题多解,同时开发学生思考问题的角度多样性。 (3)在余弦定理的应用中,培养学生利用方程思想解决三角形问题。

(4)引导学生体会“发现问题,思考问题,解决问题”的过程,使学生深刻体会定理的内涵。[l1]

3、情感、态度与价值观:

(1)在余弦定理的证明过程中,引导学生自主探究证明的思路及解法,培养学生善于思考,勇于思考的精神。

(2)运用余弦定理解决实际问题,使得学生了解到数学的实用性。激发学生热爱数学的情感。同时培养学生的数学应用意识。

三、重难点分析

1、重点:余弦定理的推导过程及定理应用

突破方法 :推导过程中,在推导之前复习平面向量的相关知识,尤其提醒学生注意向量在几何中的用途是通过给线段赋予方向,由向量积可以将线段之间的长度角度面积之间的关系联系起来。以此埋下思维的伏笔。 定理应用,需要我们在定理的推导过程中分析题目强化定理的条件,交代学生在理解定理的基础之上熟记定理公式,同时引导学生形成将实际问题转化为数学问题的建模思想

2、难点:余弦定理的几种推导过程;利用余弦定理解决实际问题以及在解三角形问题中的应用。在定理的推导过程中,如何使学生能够明白如何想到用何种方法来推导,为什么用此方法,要让学生明白之所以使用该方法证明的原因是一个不好把握的内容。同样的,在解决余弦定理的运用问题时,要注重告诉学生,何种条件下应该思考是否可以使用余弦定理来解决,怎样解决。同时它与正弦定理是易混点:在刚学习过正弦定理之后,要注意区别正弦定理和余弦定理针对的不同类型的问题。采取最佳解决方案来解决三角形问题。

突破方法:对于余弦定理推到方法的来源,应该从分析题目条件开始。已知两边及其夹角求第三边,即解此三角形(知三求三可求解),从已知角、线段长度,结合图形,容易想到建立坐标系,利用坐标表示第三边的长度即得余弦定理。另一方面从前面的有关向量的伏笔,引导学生设向量,利用三角形法则用其余两边的向量表示第三边的向量,第三边的大小即为向量的模,经过推导即得余弦定理

对于余弦定理与正弦定理的应用范围,首先,解三角形(六个元素三边三角)至少需要三个量方能解三角形,可以从引导学生从公式来区分判断;

四、教法与学法

1.教法分析:

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循“提出问题 、分析问题、解决问题 ”的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

2.学法分析:

教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键。本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

1、教法选择:根据本节课的教学目标、教材内容及学生的认知特点,我选择创设情境教学法、探究教学法和引导发现法相结合。以学生自主探究、合作交流为主,教师启发引导为辅。

2、教学组织形式:师生互动、生生互动。

3、学法指导:巴甫洛夫曾指出:“方法是最主要和最基本的东西”,因此学之有法,才能学之有效,学之有趣。根据本节课的特点,我在学法上指导学生:

①如何探究问题②遇到新的问题时如何转化为熟悉的问题③做好评价与反思。 4、教学手段

根据数学课的特点,我采用的教具是:多媒体和黑板相结合。利用多媒体进行动态和直观的演示,辅助课堂教学,为学生提供感性材料,帮助学生探索并发现余弦定理。对证明过程和知识体系板书演示,力争与学生的思维同步。学具是:纸张、直尺、量角器。

五、教学过程 流程

师生活动

1、教学回顾

首先提问:1,正弦定理是三角形的边与角的等量关系。正弦定理的内容是什么?你能用文字语言、数

设计意图

1、巩固旧知为学习新知识做准备。 2、师生互动,唤起回忆充分

知识

回顾

学语言叙述吗?2你能用哪些方法证明呢?3、证明过程中有用到哪些知识(向量的数量积与勾股定理,这就启发我们及时提醒学生对定理的证明所涉及的重要知识点的注意)

1、三角形的正弦定理内容主要解决哪几类问题的三角形? 2、正弦定理的证明方法。 3、向量的数量积: 4、勾股定理:

引入例题,推出余弦定理

复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助回忆并快速激起相应的知识方法.

1、通过这来激发学生对于余弦定理认知的渴望是的他们能更加投入到余弦定理探究的过程当中来 2、通过引入一个用正弦定理不太容易做的例题故意为难学生,促使不管是成绩好的还是差的学生积极思考解决该问题的方法,从而投入到课堂中关于余弦定理的过程中来,使他们的注意力在一定程度上有进一步的提升。 3、通过分析知道用正弦定理试求,发现因A、B均未知,所以较难求边c,运用正弦定理很难或者做不出来,用什么途径来解决这个问题?使得学生不断思考解决问题的方法,课堂进一步进入全名皆兵的时候。然后通过老师也就是我慢慢引导及提示学生联系及回忆已经学过的

师:在我们的学习关于三角函数内容之中,有正弦就有余弦,有正切就有与其对应的余切,那么有正弦定理的是不是有也有余弦定理呢?如果有

实际 问题

余弦定理那么余弦定理的内容会是怎么样的呢? 著名景区千岛湖,有三个小岛分别是A、B、C,现一名游客想从A岛直接到C岛,已知AB=6km,BC=3.4km,∠B=120o,却不知道其距离究竟是多长,你能帮他算一算吗?,求 AC (用PPT投影出小山丘)学生思考讨论

提出问题

提出问题

怎样求的AC距离呢?能用正弦定理吗

知识和方法,从而使得部分学生考虑用向量法研究这个问题。 2、

通过实际问题,引发学生思考,激发学生的学习兴趣。给出技术人员的解决办法,引起学生的疑问。提出问题,激起学生求知欲。充分调动学生学习的积极性。

问题化归

问题转化为在△ABC中,已知AB=6km,

将实际问题转化成

BC=3.4km,∠B=120o,要求 AC边长的数学问题。 数学问题,引导学

生分析问题。

让学生觉得已学知

问:这是一个解三角形的问题,那么我们可

识已经不够用,需

以用已学的解三角形知识解决吗?

要新的理论依据。

更一般的,问题可转化为已知三角形两边长

析问题

题探索

问题一般化

和夹角求第三边的问题,即:在AC=b,AB=c和A,求a。

中已知

引导学生从相关知识入手,积极讨论,选择简洁的工具。

帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化

方法吗?

篇二:余弦定理说课稿

各位老师:

上午好!

我叫王桂芳,我的抽签序号是____,今天我说课的课题是《余弦定理》,这是沪教版高中数学课本中第五章三角比中第三单元的第二节课。

对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教法学法分析、教学过程分析等几个方面来谈谈我对教材的理解和教学的设计,敬请各位老师批评指正。

一、教材分析

(一)地位与作用 “余弦定理”是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,具有广泛的应用价值,起到承上启下的作用。

(二)学情分析

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

二、目标分析

根据新课程标准突出学生综合素质培养的特点,确定了本节课三位一体的教学目标:

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中

的运用,让学生感受数学的美,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。养成实事求是的科学态度和锲而不舍的钻研精神,形成学习数学知识的积极态度。

(二)重点难点

重点:余弦定理的推导及其应用

难点:利用向量的数量积证余弦定理

三、教法、学法分析

(一)教法

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循“提出问题 、分析问题、解决问题 ”的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

(二)学法

教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键。本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

四、教学过程分析

一、复习引入

二、讲授新课

1.定理推导

2.自主探究

(1)、在?ABC中已知:a,b和C求c。

(2)、在?ABC中已知:a,c和B求b。

3.归纳总结

(1)余弦定理

在?ABC中有:

a2?b2?c2?2bccosA

b2?a2?c2?2accosB

c2?a2?b2?2abcosC

(2)定理描述

三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

(3)定理应用

已知三角形的两边及其夹角可以求解三角形

特殊地,在?ABC中,如果C?90?,那么cosC?0,

c2?a2?b2?2abcosC?a2?b2.

可见勾股定理是余弦定理在直角三角形中的特例,而余弦定理则是勾股定理在任意三角形中的推广.

有余弦定理,可以得到它的推论:

b2?c2?a2c2?a2?b2a2?b2?c2

cosA?,cosB?,cosC?. 2bc2ac2ab

利用余弦定理的推论,就可以有三角形已知的三边求三个内角.

4.例题分析

三、巩固练习

四、课堂小结

五、作业布置

五、板书设计

以上就是我对本节课的理解和设计,敬请各位老师批评指正。谢谢!

篇三:余弦定理的说课稿

余弦定理的说课稿

各位评委上午好好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

一教材分析

本节知识是必修五第二章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系,在日常生活和工业生产中也时常遇到解三角形的问题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,掌握余弦定理及简单运用。

能力目标:引导学生通过观察,推导,归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:余弦定理的内容,余弦定理的证明及基本应用。

教学难点:余弦定理的探索及证明,灵活运用余弦定理解决相关的实际问题。 二教法

根据教材的内容和编排的特点,为了有效地突出重点,突破难点,我准备采用的教法是自主探究—尝试指导—交流合作。在提出实际问题的同时,引导学生自主探究,探究过程中教师要给予指导并分析探究结果,最后师生相互交流归纳总结。 三学法:

学法上,我贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式。让学生自主探索学会分析问题,解决问题。

四教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,通过复习上节内容提出:已知两边及其夹角如何求对边?已知三边如何求三个角?

通过设置疑问引起学生学习兴趣

(二)探寻推理,得出结论

提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

(四)归纳总结,简单应用

1.让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.余弦定理的内容,讨论可以解决哪几类有关三角形的问题。

(五)讲解例题,巩固定理

本环节的目的在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。

(六)课堂练习,提高巩固

学生板演,老师巡视,及时发现问题,并解答

(七)小结反思,提高认识


余弦定理说课稿》由:免费论文网互联网用户整理提供;
链接地址:http://www.csmayi.cn/show/34005.html
转载请保留,谢谢!
相关文章