篇一:小学数学智力题答案
小学数学智力题,要答案、题
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3. 三个孩子吃三个饼要用3分钟,九十个孩子吃九十个饼要用多少时间?
4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜子的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两双呢? (30秒30分)
5. 填空: 1 1 2 3 5 ___ 13 21 34
6. 什么字全世界通用?
7.时钟刚敲了13下,你现在应该怎么做?
8、中国古代的四大古发明有哪些?(说出其二)
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?
10、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?(1分钟50分)
11. 食堂运回来白菜和萝卜共70筐,萝卜比白菜多18筐,那么,运来白菜( )筐,萝卜( )筐。
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?
15.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
16.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
17. 1元钱可以买一瓶汽水,汽水喝完后,两个空瓶可以换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
18. 题目是这样的 1=5 2=25 3=75 4=2435 问5=?
19. 请只移动一个数字,使62-63=1成立。
20.填空: 1 2 4 7 ___ 16 22
21. 一只用绳子拴在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
22.填空:1 1/2 1/3 1/4 ___ 1/6 1/7
23.世界最高峰是_____,它的高度是_________
24.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
25.中国古代将圆周率推算至小数点后7位的数学家是______,它的值为_____
26.直角三角形中斜边的平方等于两直角边的平方和叫____定理,国外又称毕达哥拉斯定理
27.中国有位有名的数学家,他证明了哥德巴赫猜想的“1+1”,这个科学家是____
A 丘成桐 B 陈景润 C 王元 D 华罗庚
28. 想象你在镜子前,镜子中的影像可以左右颠倒,怎样才能让影像上下颠倒呢?
29.数字填空: 3 6 12 ___ 48 96
30.请你说出三个和数字有关系的四字成语(词语) 必须是日常用语
31、小王说某条件下4-1=5,并用某种方式证明了。问他是如何证明的?猜猜看
32、蛋有10个,鸡蛋一打有几个?
33、1、2、5、6、7、8 打一成语
34、8个圆环连在一起,你能只切断其中一个就使8个圆环全部都分开吗? 35、2、4、6、8、10 打一成语
36、北京到杭州的火车全程需用15小时,现在火车开了7小时,问它现在在哪里?
37、什么情况下一度与一吨相同?
38、全世界死亡率最高的地方在哪里?
39、你能用三支粉笔搭成一个比3大比4 小的数字吗?
40、再见了妈妈,打一数学常用名词。
41、下周我去办几件事,买书,参观展览,去银行交房费,看病。书店周二休息,银行周六日关门,展览馆二、三、五展出,医院周二、
五、六开门,我哪天出门能一天办完所有事情?
42、在两个数2和3之间加个什么记号可以得到一个比2大比3小的数字? 43、18、20、23、28、35、_______ 请在横线处填上适当的数
A 42 B 46 C 48 D 51
44、A离学校5km,B离学校10km,A、B相距多少千米?
45、5、4、3、2、1 打一数学用语
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元;
3. 三分钟,九十个孩子同时吃
4、每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对。
5. 8
6. 阿拉伯数字
7.应该修理时钟;
8、中国古代的四大古发明有指南针,火药,活字印刷术和造纸术。(说出其二可)
9.妈妈先吃一块,再分给每个孩子两块;
10、不管从哪一头点,烧完整跟都是1小时,所以同时点两头就是半小时烧完,但是最后烧完的地方不一定是香的中间。所以同时点燃第
一根的两端和第二根的一端,第一根烧完是半个小时,这时点燃第二根的另一端并开始计时,全部烧完就是15分钟。
11.26;44
12.4只;
13.5只;
15.15米;
16.它永远不会把草吃光,因为草会不断生长;
17、共可以喝37瓶;
18.5=1
19
20、11
21.只要教小狗转过身子用后脚抓骨头,就行了。
22. 1/5
23.珠穆朗玛峰; 8844.43(2005.5.22中国国家测绘局); 8848.13(1975中国) 24.6里,36里;
25.南北朝时期(公元5世纪下半叶)的祖冲之 3.1415926 比欧洲人早了1000多年
26. 勾股定理。《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理。国外据说毕达哥拉斯定理由古希腊的毕达哥拉斯所证明,证明了这个定理后,即斩了一百头牛作庆祝,因此又称“百牛定理”。
27. B王元证明了 “3+4 ” “3+3 ”和 “2+3 ” “1+4 ”
篇二:智力题全集(带答案)
智力题全集
一.最基本题型(说明:此类题型比较简单)
1.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
2.你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
3.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
4.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
5.12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
6.在9个点上画10条直线,要求每条直线上至少有三个点?
7.在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
一.答案
1.一要一头烧,一根从两头烧,再有一根做参照,两头烧完的记下位置(即烧到这里要半小时),把参照的那根从标记位置处剪开,取其中一段A。
一头烧的那根烧完后(就是一个小时后),把A从两头开始烧,烧完后即为十五分钟,加起来共一小时十五分钟。2.答案:四个~3.大桶装满水,倒入小桶,大桶剩下2公升水。小桶水倒掉,大桶剩2公升水倒入小桶中,大桶再装满后,倒入小桶至小桶满,大桶即剩4公升水。 4.如果参加过类似于奥林匹克数学班的,都应做过这些题。问他你的国家怎么走,他肯定指向的是诚实国。5.12个时可以找出那个是重还是轻,13个时只能找出是哪个球,轻重不知。
把球编为①②③④⑤⑥⑦⑧⑨⑩⑾⑿。(13个时编号为⒀)
第一次称:先把①②③④与⑤⑥⑦⑧放天平两边,
㈠如相等,说明特别球在剩下4个球中。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿特别,把①与⑿作第三次称量即可判断是⑿是重还是轻 ⒉如①⑨<⑩⑾说明要么是⑩⑾中有一个重的,要么⑨是轻的。
把⑩与⑾作第三次称量,如相等说明⑨轻,不等可找出谁是重球。 ⒊如①⑨>⑩⑾说明要么是⑩⑾中有一个轻的,要么⑨是重的。
把⑩与⑾作第三次称量,如相等说明⑨重,不等可找出谁是轻球。
㈡如左边<右边,说明左边有轻的或右边有重的
把①②⑤与③④⑥做第二次称量
⒈如相等,说明⑦⑧中有一个重,把①与⑦作第三次称量即可判断是⑦与⑧中谁是重球
⒉如①②⑤<③④⑥说明要么是①②中有一个轻的,要么⑥是重的。 把①与②作第三次称量,如相等说明⑥重,不等可找出谁是轻球。 ⒊如①②⑤>③④⑥说明要么是⑤是轻的,要么③④中有一个是重的。 把③与④作第三次称量,如相等说明⑤轻,不等可找出谁是重球。㈢如左边>右边,参照㈡相反进行。
当13个球时,第㈠步以后如下进行。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿⒀特别,把①与⑿作第三次称量即可判断是⑿还是⒀特别,但判断不了轻重了。
⒉不等的情况参见第㈠步的⒉⒊ 6. 见下面的点 10条线的情况是 123 456 789 148 159 247 258 269 357 368
① ② ③
④⑤⑥
⑦ ⑧ ⑨
7.首先考察时针与分针的情况,很容易看出分针转一圈与时针只重合一次,就是一小时一次。但11时与0时的分钟区内共享一个重合点,所只24
小时中,只有22次重合,现在只需考察这22个重合点时,秒针与不与它重合就行了(实际上,只要判断11个重合点,剩下的11个情况相同)。
0时整当然没问题,当n点到n+1点间(n=1,2,??10),设这时是X小时
则30°X=60(X-n)x6°
即X=12n/11。
此时时针分针的位置是30°X=(360/11)n°=(32+8/11)n°
秒针的位置是360(X-n)6°=(4320/11)n°=(392+8/11)n°=360n°+(32+8/11)n°=(32+8/11)n°
重合!所以共有22个点重合。
二.没有答案型
(说明:这些题显然不是考你智力。而考的是你的反应能力。这种题大多数没有答案,但是要看你的反应喽!)
1.为什么下水道的盖子是圆的?
2.中国有多少辆汽车?
3.将汽车钥匙插入车门,向哪个方向旋转就可以打开车锁?
4.如果你要去掉中国的34个省(含自治区、直辖市和港澳特区及台湾省)中的任何一个,你会去掉哪一个,为什么?
5.多少个加油站才能满足中国的所有汽车?
6.想象你站在镜子前,请问,为什么镜子中的影象可以颠倒左右,却不能颠倒上下?
7.为什么在任何旅馆里,你打开热水,热水都会瞬间倾泻而出?
8.你怎样将Excel的用法解释给你的奶奶听?
9.你怎样重新改进和设计一个ATM银
10.如果你不得不重新学习一种新的计算机语言,你打算怎样着手来开始?
11.如果你的生涯规划中打算在5年内受到奖励,那获取该项奖励的动机是什么?观众是谁?
12.如果微软告诉你,我们打算投资五百万美元来启动你的投资计划,你将开始什么样商业计划?为什么?
13.如果你能够将全世界的电脑厂商集合在一个办公室里,然后告诉他们将被强迫做一件事,那件事将是什么?
没有答案型(比较大众的回答)
1.圆井盖掉不下去
2.一千万(我这么认为)
3.我会回答顺时针方向。
4.北京。(原因是我生在北京长在北京,想让北京离是因为想去看看外面的世界,既然美国人问咱们这种政治问题,咱们也就回应一个政治玩笑罢了)
5.十万个(可以创造将近一百万的就业岗位呢)
6.答案是眼睛是左右长着的
7.如果不倾泻而出,这家旅馆将没有人去住。(所以这个问题最好去问旅馆的老板。)
8.告诉她这是最先进的东西,她不需要动手,我来帮她做就可以。
9.我想斯皮尔伯格来回答这道题是在合适不过得了。
10.我觉得回放飞网呆上半个月比较合适。
11.这题我没有任何想法,因为没有工作经验,所以完全没听明白他问的是什么!
12.做微软的OEM,这样能够更好的服务微软。
13.只准开发我们认证的驱动!
三.难题:这类题有一定难度,如果得不到答案,也不能说明什么
(说明:如果你想到了解题思路,那么答案马上就能出来。如果想不到思路,那么??就别想解出来了。)
1.你让工人为你工作7天,回报是一根金条,这个金条平分成相连的7段,你必须在每天结束的时候给他们一段金条。如果只允许你两次把金条弄断,你如何给你的工人付费?
2.有一辆火车以每小时15公里的速度离开北京直奔广州,同时另一辆火车每小时20公里的速度从广州开往北京。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从北京出发,碰到另一辆车后就向相反的方向返回去飞,就这样依次在两辆火车之间来回地飞,直到两辆火车相遇。请问,这只鸟共飞行了多长的距离?
3.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的药丸的重量+1。只称量一次,如何判断哪个罐子的药被污染了?
4.门外三个开关分别对应室内三盏灯,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?
5.人民币为什么只有1、2、5、10的面值?
6.你有两个罐子以及50个红色弹球和50个蓝色弹球,随机选出一个罐子, 随机选出一个弹球放入罐子,怎么给出红色弹球最大的选中机会?在你的计划里,得到红球的几率是多少?
三.难题——题解
1.切两刀,分为1/7、2/7、4/7三段。第一天给1/7;第二天给2/7,要回1/7;第三天给1/7 ;第四天给4/7 要回1/7+2/7;第五天给1/7;第六天给2/7,要会1/7;第七天给1/7
2.至今不知道应如何解答。(以前理解错了,可能应该这么算:鸟速*(总路程/两车速度和) 但是这么又好像太简单咯.具体如下:北京到广州的铁路线全长2295千米,不管鸟怎么飞,它飞行的时间就是两列火车相遇的时间,两列火车相遇时间是(15t+20t)=2295,t近似等于65小时,65乘以鸟飞行的速度30,1950千米。总之答案就是30*两列火车相遇的时间。
3.依次从四个罐子中取出1、2、3、4个药丸,结果不用说了吧!
4.先开一个,开很长时间。然后关掉,再开另一个。出去看,亮着的那个不用说。剩下的两个不亮的,按照灯泡的温度来进行判断。
5.因为可以组成任何面值。
6.不清楚。可能是50%。
四.超难题
(说明:如果你是第一次看到这种题,并且以前从来没有见过类似的题型,并且能够在半个小时之内做出答案。只能说明你的智力超常??)
第一题 . 五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。他们决定这么分:
抽签决定自己的号码(1、2、3、4、5)
首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼
如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼
依此类推
条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。 问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?
第二题 . 一道关于飞机加油的问题,已知:
每个飞机只有一个油箱,
飞机之间可以相互加油(注意是相互,没有加油机)
一箱油可供一架飞机绕地球飞半圈,
问题:
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
四.超难题——题解
一.设5个人分别是①②③④⑤
假设前面的都扔海里了,由④来分,无论他怎么分(包括全给⑤),都面临被否决扔海里的危险。
所以,当③来分时,④⑤一个不给,全由③独吞,④为了避免被扔海里的危险,也要同意,③的方案成立。
那么,在②分时,③是肯定要反对的,要赢得④⑤的同意,必须多给一个,否则有可能否决(对④⑤来说,反正③来分时还是0,你不多给一个
就否决),所以②的分配方案一定是:②98 ③0 ④1 ⑤1
回到①来的分配,由于②肯定反对,为了赢得③④⑤的同意,必须在②分配方案的基础上给他们加一个,由于只需再争取两票,③④⑤中可以 教育大全网()版权所有
排除争取一个,从收益来说,排除④⑤中的一个即可,那么①的分配方案为:①97 ③1 ④(或⑤)1 其它都不给!
二.一架直飞,两架在前半圈向东走去换油,两架在后半圈向西走去换油,刚好?? 根据殴几里得物体理论观点,应用海伦公式A=[s(s-a)(s-b)(s-c)]^1/2,将曼德布罗特集关于动力学系统从定性和定量两方面对多项式fc(z):z*z十c(c为给定的复数)进行迭代时,可以得知序列z。,z1,z2,z3,??可能消逝于无穷,而且这过程进行很快,但它们也可能保持有界,即离出发点不超越一个有限的距离。因此,我们可以从哥德巴赫猜想,以及费尔马大定理,尤其是费尔马的球堆积猜想可以推断出????
答案是??答案是六架飞机。
说明:
1、飞机1、飞机2等飞机n为飞机的个数
2、把整个圆(飞行轨道)周等分为8份,分别定为O点(起飞点),依次为A、B、C、
D、E、F、G
设想一下,按题目要求一架飞机要想不加油安全的飞并且安全返回,能飞行最远距离是一个圆周的1/4,既飞行度距离是OB;如果给另外一架飞机加油的话它只能飞行1/8的距离OA。这些前提的存在,再根据题意就可推出如下的飞行放案:
1、首先同时从O点起飞三架飞机,当他们飞到A点时,飞机1、飞机2将继续飞行,飞机三给飞机1、飞机2加油,各加1/4的油,这样飞机1和飞机2就满油了;飞机3用剩下的1/4(飞到A点已经用去了1/4的油)的油刚好能飞回起点。
2、飞机1、飞机2继续飞行。飞到B点时,飞机1将继续飞行,飞机2给飞机1加油,加1/4的油,这样飞机1的油箱又会加满油;飞机2用剩下的2/4(飞到B点又用去了1/4的油再加上给飞机1加的1/4油)的油刚好飞回起点。
3、飞机1继续飞行,因为满油,所以可以飞半圈飞到F点。
4、当飞机1飞到D点的时刻,同时从O点反方向派出三架飞机,飞机4、飞机5、飞
篇三:经典数学智力题大全及讲解
【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林没死的情况下必打林,否则自己必死。
小李经过计算比较(过程略),会决定自己先打小林。
于是经计算,小李有873/2600≈33.6%的生机;
小黄有109/260≈41.9%的生机;
小林有24.5%的生机。
哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;
小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!
最后李,黄,林存活率约38:27:35;
菜鸟活下来抱得美人归的几率大。
李先放一空枪(如果合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己肯定先玩完了)林会选黄打一枪(毕竟它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性成功率0.73
李和黄打林李黄对决0.3:0.40.7*0.4可能性李林对决0.3:0.7*0.6*0.70.7*0.6可能性成功率0.64
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?按:心理问题,不是逻辑问题
是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。
要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。
把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。
【8】猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌? 方块5
【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整
数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):
假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36
(这个不再解释了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。
【10】某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?
15%*80%/(85%×20%+15%*80%)
【11】有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
f(x)=(60-2x)*x,当x=15时,有最大值450。
450×4
【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马) 6种结果
【13】1=5,2=15,3=215,4=2145那么5=?
因为1=5,所以5=1.
【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。问:有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱