篇一:2014年新人教版七年级下册全部数学教案
2014新人教版 七年级数学下册
全 册 教 案
第五章 相交线与平行线
5.1.1相交线
教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力. 重点:在较复杂的图形中准确辨认对顶角和邻补角. 难点:在较复杂的图形中准确辨认对顶角和邻补角. 教学过程
一、创设情境,引入课题
先请同学观察本章的章前图,然后引导学生观察,并回答问题. 学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.
二、探究新知,讲授新课
1.对顶角和邻补角的概念
学生活动:观察上图,同桌讨论,教师统一学生观点并板书.
【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角. 2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么. 【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).
∠4=∠2=140°(对顶角相等). 三、范例学习
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结
学生活动:表格中的结论均由学生自己口答填出.
五、布置作业:课本P3练习
5.1.2垂线(第一课时)
教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛 2.了解垂直概念,能说出垂线的性质―经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线‖,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境
1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象? 在学生回答之后,教师指出:―垂直‖两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.
2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.
师生分清―互相垂直‖与―垂线‖的区别与联系:―互相垂直‖指两条直线的位置关系;―垂线‖是指其中一条直线对另一条直线的命名。如果说两条直线―互相垂直‖时,其中一条必定是另一条的―垂线‖,如果一条直线是另一条直线的―垂线‖,则它们必定―互相垂直‖。 4.垂直的表示法.
垂直用符号―⊥‖来表示,结合课本图5.1-5说明―直线AB垂直于直线CD,垂足为O‖,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图. 5.简单应用
(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例. (2)判断以下两条直线是否垂直:
①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质
1.学生用三角尺或量角器画已知直线L的垂线.
(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.
(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直. 2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P画射线MN的垂线,Q为垂足;
(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点; (3)过点P画线段AB的垂线,交线AB延长线于Q点.
学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线. 三、课堂小结
本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?
四、布置作业:课本P7练习,P9.3,4,5,9.
5.1.2垂线(第二课时)
教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离. 教学重点:―垂线段最短‖的性质,点到直线的距离的概念及其简单应用. 教学难点:对点到直线的距离的概念的理解. 教学过程 一、创设问题情境
1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短? 学生看图、思考.
2.教师以问题串形式,启发学生思考.
(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短.
(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.
问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短? 3.教师演示教具,给学生直观的感受.
教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.
使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验. 4.学生画图操作,得出结论. (1)画出直线L,L外一点P; (2)过P点出PO⊥L,垂足为O;
(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……; (4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短. 5.师生交流,得出垂线的另一条性质.
教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短. 关于垂线段教师可让学生思考: (1)垂线段与垂线的区别联系. (2)垂线段与线段的区别与联系. 二、点到直线的距离
1.师生根据两点间的距离的意义给出点到直线的距离命名.
结合课本图形(图5.1-9),深入认识垂线段PO:PO⊥L,∠POA=90°,O为垂足,垂线段PO的长度比其他线段PA1、PA2……中是最短的.
按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2……长度都不是点P到L的距离. 2、练习课本P6练习
三、课堂小结:通过这节课,我们主要学习了什么呢? 四、布置作业:课本P8.6,P10.10,11,12,P10观察与猜想.
5.1.3同位角、内错角、同旁内角
教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角. 重点:同位角、内错角、同旁内角的概念与识别; 难点:识别同位角、内错角、同旁内角。 教学过程 一、导入新课
前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角
如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。 我们来研究那些没有公共顶点的两个角的关系。
c
1
ab
8
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系? 在截线的同旁,被截直线的同方向(同上或同下). 具有这种位置关系的两个角叫做同位角。 同位角形如字母“F”。
篇二:七年级下册数学概念
七年级下册数学概念o(≧v≦)o~~好棒
第一章 整式的乘除
1.
2.
3.
4.
5.
6. 同底数幂相乘,底数不变,指数相加。 幂的乘方,底数不变,指数相乘。 积的乘方等于积中每一个因式分别乘方。 同底数幂相除,底数不变,指数相加。 除0外的任何数的零次方都是一 单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
7. 单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把所得的积相加。
8. 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
9. 平方差公式:两数和与这两数差的积,等于与他们的平方差。
10. 完全平方公式:
11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。
12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章 相交线与平行线
1.在同一平面内,两条直线的位置关系有相交和平行。
2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。
3.在同一平面内,不相交的两条直线叫平行线。
4.对顶角相等。
5.如果两个角的和是180°,称这两个角互为补角。
6.如果两个角的和是90°,称这两个角互为余角。
7.同角或等角的余角相等,同角或等角的补角相等。
8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
9,平面内,过一点有且只有一条直线与已知直线垂直。
10.垂线线段最短。
11、在同一平面内:同位角相等
内错角相等 两直线平行
同旁内角互补
12.过直线外一点有且只有一条直线与已知直线平行。平行于同一条直线的两只线平行。
13.平行线的定义: 同位角相等
两直线平行 内错角相等
同旁内角互补
第三章 三角形
1三角形的内角和是180°。
2直角三角形的两个锐角互余。
3.三角形任意两边之和大于第三边,三角形任意两边之和小于第三边。
4.在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线,
5.三角形的三条中线交于一点,这个点成为三角形的重心。
6.在三角形中,一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。三角形的角平分线交于一点。
7.从三角形的一个顶点向他的对边所在直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。三角形的三条高所在的直线交于一点。
8.能够完全重合的两个图形成为全等图形。
9.全等三角形的形状和大小都相同。
10.能够完全重合的三角形叫做全等三角形。全等三角形的对应边相等,对应角相等。
11.三边分别相等的两个三角形全等,简写“边边边”或“SSS”.
12.两边及其夹角分别相等的两个三角形,简写“角边角”或“ASA”.
13.两边分别相等且其中一组对边等角的对边相等的两个三角形,简写“角角边”或“AAS”。
14.两边及其夹角分别相等的两个三角形,简写“边角边”或“SAS”。
第四章变量之间的关系
1.事物A随着事物B的变化而变化,A是自变量,B是因变量。在变化过程中始终不变化的量叫做常量。
2.可以用:①关系式 ②图象 来表示变量之间的关系。
3.用图象表示变量之间的关系时,通常用横轴上的点表示自变量,用竖轴上的数表示因变量。
第五章 生活中的对称轴
1.如果一个平面图形沿一条直线折叠后,直线两边的部分能够互相重合,那么这个图形为轴对称图形,这条直线叫做对称轴。
2.如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴。
3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
4.等腰三角形是轴对称图形。等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),他们所在的直线都是等腰三角形的对称轴。等腰三角形的两个底角相等。
5.线段是轴对称图形,垂直且平分线段的直线是它的一条对称轴。
6.垂直于一套直线,并且平分这条线段的直线,叫做这条线段的垂直平分线。
7.线段垂直平分线上的点到这条线段两个短点的距离相等。
8.角是轴对称图形,角平分线所在的直线就是他的对称轴。
9,角平分线上的点到这个角的两边的距离相等。
第六章概率初步
1.在一定条件下,有些事情我们事先肯定他一定发生,这些事情称为必然事件。
2.有些事情我们事先能肯定他一定不会发生,这些事情称为不可能事件。 3,必然事件与不可能事件统称确定事件。
4.有许多时间我们事先无法肯定他发生不发生,这些事称为不可能事件,也称随机事件。
5.在试验次数很大时的频率都会在一个常数附近摆动,这就是频率的稳定性。
6.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
7.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。
8.如果一个试验有N种等可能的结果,事件A包含其中的M种结果,那么事件A发生的概率是为:P(A)=
篇三:七年级下册数学笔记
七年级下册数学笔记
1. 同底数幂的乘发
同底数幂的相乘,底数不变,指数相加am×an=am+n。
2.幂的乘方与积的乘方 幂的乘方,底数不变,指数相乘。(am)n=amn
积的乘方等于积里的每个因数的乘方的积(ab)n=anbn。
3.同底数幂的除法
同底数幂相除,底数不变,指数相减。am÷an=am-n
4.整式的乘法
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它(的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律让单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
5.平方差公式
两数与这两数差的积,等于它们的平方差。(a+b)(a-b)=a2-b2
6.完全平方公式
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
7.整式的除法
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
8.两条直线的位置关系
对顶角相等 同角或等角的余角相等,同角或等角的补角相等
平面内,过一点有且只有一条直线与已知直线垂线。直线外一点与直线上各点连接的所有线段中,垂线段最短。 9.探索直线平行的条件
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简称为:同位角相等,两直线平行。
过直线外一点有且只有一条直线与这条直线平行。平行于同一条直线的两条直线平行。
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简称为:内错角相等,两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简称为:同旁内角互补,两直线平行。
10.平行线的性质 两条平行直线被第三条直线所截,同位角相等。简称为:两条直线平行,同位角相等。
两条直线被第三条直线所截,内错角相等。简称为:两直线平行,内错角相等。 两条直线被第三条直线所截,同旁内角互补。简称为:两只线平行,同旁内角互补。
11.用尺规作角
作一个角等于已知角:
作法:1.作射线OB
2.以O点为圆心,任意长为半径作弧变OA,OB于M,N
3.以O点变为圆心,OM长为半径作为弧变OB于点N.
4.以N点为圆心,MN的长为半径作弧变前弧于M
5.作射线OM。
12.认识三角形
三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形三个内角的和等于180度。
直角三角形的两个锐角互余。
三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 三角形的三条中线交于一点,这点称为三角形的重心。
在三角形中,一个内角的叫平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线交于一点。
从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
三角形的三条高所在的直线交于一点。
13.图形的全等
能够完全重合的两个图形称为全等图形。
全等图形的形状和大小都相同。
能够完全重合的两个三角形叫做全等三角形。
全等三角形对应边相等,对应角相等。
14.三角形全等的条件
三边分别相等的两个三角形全等,简写为“边边边”或“SSS”
两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”。
两角分别相等且其中一组的对边等角相等的两个三角形全等,简写成“角角边”或“AAS”。
两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。
15.用表格表示变量之间的关系
我国人口总数y随时间x的变化而变化,x是自变量,y是因变量。
在这一变化过程中,小车下滑的距离(木板长度)一直没有变化。像这种在变化过程中数值始终不变的量叫做常量。
16.轴对称现象
如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
17.探索轴对称的性质
在轴对称图形或两个成轴对称的图形中,对应边所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
18.简单的轴对称图形
等腰三角形是轴对称图形。
等腰三角形顶角的平分线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
等腰三角形的两个底角相等。
线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴。
垂直于一条线段,并且平分于这条线段的直线,叫做这条线段的垂直平分线(简称中垂线)。
线段垂直平分线上的点到这条线段两个端点的距离相等。
角是轴对称图形,角平分线所在的直线是它的对称轴。
角平分线上的点到这个角的两边的距离相等。
19.感受可能性
在一定的条件下,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件;有些事情我们事先能肯定它不会发生,这些事情称为不可能事件;必然事件与不可能事件统称为确定事件;但是,也许许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。